Congruences and the special values of L-functions

A. Raghuram (Fordham)

Thu Feb 6, 00:00-01:00 (10 months ago)

Abstract: There is an idea in number theory that if two objects are congruent modulo a prime p, then the congruence can also be seen for the special values of L-functions attached to the objects. Here is a context explicating this idea: Suppose f and f' are holomorphic cuspidal eigenforms of weight k and level N, and suppose f is congruent to f' modulo p; suppose g is another cuspidal eigenform of weight l; if the difference k - l is large then the Rankin-Selberg L-function L(s, f x g) has enough critical points; same for L(s, f' x g); one expects then that there is a congruence modulo p between the algebraic parts of L(m, f x g) and L(m, f' x g) for any critical point m. In this talk, after elaborating on this idea, I will describe the results of some computational experiments where one sees such congruences for ratios of critical values for Rankin-Selberg L-functions. Towards the end of my talk, time-permitting, I will sketch a framework involving Eisenstein cohomology for GL(4) over Q which will permit us to prove such congruences. This is joint work with my student P. Narayanan.

number theory

Audience: researchers in the topic

Comments: pre-talk at 3pm


UCSD number theory seminar

Series comments: Most talks are preceded by a pre-talk for graduate students and postdocs. The pre-talks start 40 minutes prior to the posted time (usually at 1:20pm Pacific) and last about 30 minutes.

Organizers: Kiran Kedlaya*, Alina Bucur, Aaron Pollack, Cristian Popescu, Claus Sorensen
*contact for this listing

Export talk to